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We investigate the nature of written human language within the framework of complex network theory. In
particular, we analyze the topology of Orwell’s 1984 focusing on the local properties of the network, such as
the properties of the nearest neighbors and the clustering coefficient. We find a composite power law behavior
for both the average nearest neighbor’s degree and average clustering coefficient as a function of the vertex
degree. This implies the existence of different functional classes of vertices. Furthermore, we find that the
second order vertex correlations are an essential component of the network architecture. To model our empiri-
cal results we extend a previously introduced model for language due to Dorogovtsev and Mendes. We propose
an accelerated growing network model that contains three growth mechanisms: linear preferential attachment,
local preferential attachment, and the random growth of a predetermined small finite subset of initial vertices.
We find that with these elementary stochastic rules we are able to produce a network showing syntacticlike
structures.
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I. INTRODUCTION

Many systems in nature are composed of a large number
of interacting agents that exhibit small world, scale free, and
hierarchical behavior. Such networks can be found in several
disciplines including social human organization, biological
and chemical structures, the World Wide Web, etc. �1�.

Words are a good example of simple elements that com-
bine to form complex structures such as novels, poems, dic-
tionaries, and manuals that are designed to transport or con-
vey information. The written human language is one of the
most important examples of a self-organizing system in na-
ture. It is not only interesting in a linguistic and philosophi-
cal sense, but it also has the virtue of being an accessible
network system which allows full empirical studies of its
structure to be carried out. If we consider a complete single
book as our system and treat this book as a finite directed
network in which the words are the vertices and two vertices
are linked if they are neighbors, then we can analyze this
network completely. We are able to know everything about
the construction of such a network: we know the sequence in
which each vertex was linked to the network and we can
follow the growth of each vertex degree without error. More-
over, we already know a great deal about the syntactic and
logical structure of grammar which determines how the net-
work organizes itself. Finally, plenty of data is available,
covering centuries of human literature.

The first quantitative observation that language displays a
complex topological structure was due to Zipf in 1949 �2�.
Zipf observed that if the words of a prose are ordered in their
rank of occurrence, that is, the most frequent word in the
prose has rank 1, the second rank 2, and so on, and the
frequency of the words is plotted against their rank, then, for
every text and for every language, we find a skewed distri-
bution that fits a power law �see Fig. 2�a� as an example�.
This universal empirical law is known as Zipf’s law.

The first attempt to explain this law was due to Simon in
1955 �3�. He proposed a stochastic model for generating a
text based on the frequency of occurrence of words, which

he was able to solve exactly. In this model a stochastic text
was built by adding a previously used word with probability
proportional to its frequency and by adding new words with
constant rate.

With the introduction of scale free network theory �1,4�,
human language structure was examined by a number of au-
thors �6–10�. There is a straightforward connection between
the rank r of a word and the scale free distribution for the
vertices degree in a network. If we define the degree k of a
word as the number of different words this word is connected
to, and P�k� the word degree distribution, we have

r�k� � �
k

�

P�k��dk�. �1�

In language network the degree of a word is equivalent to its
frequency, so that Eq. �1� is a direct link to transform the
scale free degree distribution into Zipf’s law. Thus in the
context of growing networks, Simon’s model is equivalent to
the more recent �11�, where the network growth is regulated
by preferential attachment �4,12�.

In all the models above, growth is based on the global
properties of the text. These classical models display a good
power law for the degree distribution, but, as it will be
stressed later, this power law distribution holds even when
we randomize the words in the text, that is if we write a
meaningless book. Thus the degree distribution is not the
best measure of the self-organizing nature of this network.

Nevertheless, everybody who is experienced with the pro-
cess of writing knows that syntax is the basic rule used to
build a sentence. Syntax is nothing more than a set of local
rules that give the ensemble of words in a phrase an intelli-
gent and understandable structure.

In this work we analyze in detail the topology of the writ-
ten language network focusing on the local properties and we
find that these local properties are essential elements of the
network architecture. We find that to build a stochastic model
reproducing the main properties of language we need several
growth mechanisms for the network. We obtain the best fits
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with real data by adding a random attachment mechanism,
for a small preselected set of vertices, in an accelerated
growing network, that displays both global and local prefer-
ential attachment.

This paper is part of an expanding literature of research
that applies physical ideas to problems in language. Those
problems are mostly related to computational and evolution-
ary properties of language �13–15�, and have applications to
artificial intelligence, linguistic, and anthropology.

The paper is organized as follow: in Sec. II we analyze
the growth properties and the nearest neighbor properties of
a novel, in Sec. III we generalize the Dorogovtsev-Mendes
model for language �5�, and extend it to include the local
behavior of vertices.

II. TOPOLOGY OF THE NETWORK

We consider George Orwell’s 1984 as our system �16,17�.
This novel can be treated as a finite directed network in
which the words are the vertices and two vertices are linked
if they are neighbors. Punctuation is also considered as ver-
tices.

For our purposes it is very important to consider written
human language as a directed network since the syntactic
rules of language are not reflexive. An interesting measure to
quantify this behavior of language is the link reciprocity, that
quantifies the nonrandom presence of mutual edges between
pairs of vertices �18�. Reciprocity values lie between −1 for
perfectly antireciprocal networks, 0 for areciprocal networks,
and 1 for perfectly reciprocal networks. In our case we find a
value of 0.021 for the novel 1984. It means that written
human language is one of the natural networks closest to the
absolute areciprocity.

In Fig. 1 we show the first 60 vertices of our network,
corresponding to the first 60 words of 1984. A random walk
in the whole network defines exactly all the grammatical and
syntactical rules that are in the text. In such a directed net-

work the degree and the frequency of a word have the same
meaning, and are equal, because every time a new word is
added to the text it is the only vertex of the network to
acquire an edge.

The network is composed by 8992 vertices representing
the different words and 117 687 directed edges so that the
mean degree is �k�=13.1. The degree distribution follows a
power law with slope: P�k��k−1.9, and Zipf’s law, according
to Eq. �1�, has slope −1.1 �see Fig. 2�.

It is important to notice that the feature of being a scale
free network does not depend on the syntactic structure of
the language �19�. In fact, due to the equivalence between
frequency and degree of a vertex, if we shuffle the text we
obtain the same degree distribution, but lose all the syntactic
structure.

A. Growth properties

A basic property of language network is that it is an ac-
celerated growing network in the sense that the number of
edges between words grows faster than the number of verti-
ces �20�. If we define the time step t as the time in which a
new word is added to the text and N�t� the total number of
words in the text at time t, we find empirically that

FIG. 1. Illustration of the language network for the first 60
words of Orwell’s 1984.

FIG. 2. �a� Measure of Zipf’s law on 1984. The dashed line is a
power law with slope −1.1. �b� The degree distribution P�k� mea-
sured on the same novel. The slope found is −1.9.
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N�t� � t1.8. �2�

At every time, t will represent the number of different words
used to compose the text, or the used vocabulary size, while
N�t� will represent the total novel size.

In order to build a stochastic model for language, we will
need a random growth mechanism that attaches new words
to the text and a preferential attachment �PA� mechanism that
attaches previously used words to the text. Moreover, we will
need a mechanism that could catch the inner structure of the
text, the syntax.

B. Nearest neighbor properties

Syntax is made up of local and selective structures that
can be recognizable through the analysis of nearest neigh-
bors. A very important measure to quantify the hierarchical
structure of a network is the clustering coefficient �21�. This
counts the triangles that form in the unweighted and directed
network associated with the network in consideration. We
expect language to show a low average clustering coefficient
because only a few triangles are present in the related net-
work. The reason for this is the selectiveness of syntactic
structures. For example, the word “like” is able to link to
definite and indefinite articles “a” and “the” but these articles
will never be linked to each other.

We define the clustering coefficient ci for every vertex i of
our network as

ci 	
ei

di�di − 1�
, �3�

where di is the number of the different nearest neighbors of
vertex i �with di�0,1� and ei is the number of directed
edges that connect those nearest neighbors. This formula is a
generalization of that for undirected networks �1�.

We find that the mean clustering coefficient for our net-
work is �c�=0.19, that is the clustering coefficient is on av-
erage very low if compared to that of other real networks �1�.
This is due to the syntactic structure of language that tends to
create functional structures instead of clustering structures.

In Fig. 3 we show the clustering coefficient against the
degree of the vertices for our novel. The clustering coeffi-
cient values are spread across the graph. If we associate
those values to the properties of the subgraph associated to
each word, we understand how words can display a very
complex organization.

Even if the mean clustering coefficient for this kind of
network is very low, modularity is still evident from a global
measure of the mean clustering coefficient and the mean
nearest neighbor degree as a function of the vertex degrees.
In particular the mean clustering coefficient as a function of
the vertex degree is flat for random graphs �22�. Our mea-
sures are shown in Fig. 4�a�. Two different behaviors clearly
emerge. For low values of k the data is nearly flat, which
means low degree vertices do not display a strong hierarchi-
cal behavior. It is not the same for high degree vertices where
hierarchical structures are apparent.

The mean nearest neighbor degree as a function of the
vertex degree is a good estimator for the degree-degree cor-

relations �22�. This is also flat in the random graph case. Our
measurements in Fig. 4�b� show the existence of global dis-
assortative or negative correlations, where large degree ver-
tices tend to be connected to those with low degree and vice

FIG. 3. The clustering coefficient against the degree of the ver-
tices in 1984.

FIG. 4. �a� The average clustering coefficient as a function of
the vertex degree. �b� The average nearest neighbor degree as a
function of the vertex degree. Noise has been removed using loga-
rithmic binning. In both plots two different regions emerge display-
ing different power law behavior.
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versa. Moreover, we can see strong analogies with the mea-
sure of the mean clustering coefficient. In fact the mean near-
est neighbor degree displays two different behaviors, the first
for low values of k where the power law fitting curve is
nearly flat, revealing very low correlations between the de-
gree of vertices. For large values of k the power law behavior
is much stronger, disclosing strong degree-degree correla-
tions for high degree vertices.

The cutoff in the power laws for the mean clustering co-
efficient and the mean nearest neighbor degree is nearly the
same and is around k
100. Only around 1% of the total
number of vertices in the network possess k�100 and those
vertices belong to the 64% of the total number of edges in
the network. Those vertices, belonging to the tail of P�k�
distribution �see Fig. 2�b��, are essentially articles, punctua-
tion, prepositions, and pronouns. They organize the main ar-
chitecture of the network.

Many attempts to find a statistical measure that can de-
scribe the syntactical structure as an emergent property of the
language have been proposed �8,23�, but these use a priori
information about the logical role of each word.

The small value of the clustering coefficient implies, as
we stressed before, that there are only a few triangles in the
network. A particular structure emerging from the network is
the directed binary structure, that is when two words are
linked together several times in the text.

We show in Table I the most common binary structures
we find in our novel. Some of them can appear trivial, but
looking at the number of times they emerge in the text it is
understandable why we consider them so important. If we
plot a histogram of the occurrence of each binary structure
we find a power law distribution. This suggests that the bi-
nary structures play an important role in the organization of
the complex network.

In Fig. 5 we show a measure for the relative occurrence of
previously appeared words during the evolution of the text.
In Fig. 5�a� we count the occurrence of a repeated word if it
belongs to a previously existing binary structure, while in
Fig. 5�b� we count the occurrence of a repeated word if it
does not belong to a previously existing binary structure. We
find that more than half the words added to the text form
binary structures that are already present, while only 36% of
the words entering the text does not belong to binary struc-
tures.

The standard way to create scale free networks is the PA
mechanism �1�, that is a new vertex is linked to vertex i with
probability proportional to its degree ki. However, this
mechanism does not reproduce the massive formation of bi-
nary structures observed in the language network.

Creation of binary structures implies that new edges form
between previously linked vertices. This behavior can be re-
produced through a stochastic process that is not the usual
PA, but a local PA. By local PA we mean that a vertex will
be linked to a node i chosen from its nearest neighborhood
with probability proportional to ki.

It appears quite natural now, for the construction of a
model, to split the standard PA �1� in the local PA and the
global PA. For global PA we mean a mechanism for choos-
ing vertices as the standard PA, but excluding the nearest
neighborhood, that is a vertex will be linked to a node i that
is not part of its nearest neighborhood with probability pro-
portional to ki.

In the next section we review an important accelerated
growing network model that fits very well with global prop-
erties of language and later we add to it the stochastic be-

TABLE I. The most frequent binary structures that are present in
1984 with their relative frequencies.

Rank Structure Number of occurrences

1 of the 742

2 , and 717

3 . the 594

4 it was 576

5 in the 570

6 . he 560

7 . it 477

8 ’ s 412

FIG. 5. �a� Number of occurrences of repeated binary structures
of words in the text against the total number of words. �b� Number
of occurrences of previously existing words in the text, that are not
part of previously existing binary structures, against the total num-
ber of words.

A. P. MASUCCI AND G. J. RODGERS PHYSICAL REVIEW E 74, 026102 �2006�

026102-4



havior we found in the previous analysis to build up a model
that captures both the global and local properties of real text.

III. MODELS

Dorogovtsev and Mendes introduced a model �5,20�
�hereafter the D-M model� for an accelerated growing net-
work as a basic model for language. We generalize this work
with the intention to understand the local properties of the
language such as the clustering coefficient and the nearest
neighbor properties.

We make a few modifications to the model to suit it to our
analysis. We will consider it as a directed network and, based
on the equivalence between frequency and degree of a word,
we make some simplifications in the implementation of the
network.

A. D-M model

The D-M model �5,20� starts with a chain of 20 connected
vertices. �i� At each time step we add a new vertex �word� to
the network. We link it to an old vertex of the network
through the standard PA, that is, it will be linked to any
vertex i with probability proportional to ki. �ii� At its birth,
m�t�−1 new edges emerge between old words, where m�t� is
a linear function that can be measured and represents the
accelerated growth of the network in consideration. These
new edges emerge between old vertices i and j with the
probability proportional to the product of their degrees ki ·kj.

We use

�m�t�� 
 0.002t + 2.7, �4�

which is a result we measured from 1984.
This simple model has an analytical solution and can re-

produce very well the degree distribution �5,20�. However, it
fails to reproduce Zipf’s law �see Fig. 7�a�� and the internal
structure of the language. The average clustering coefficient
measured in the D-M model is �c�k��=0.16, that is, smaller
than that measured for 1984, but close to it.

In Fig. 8�a� we show the clustering analysis performed on
the model compared to our network. Even though the general
behavior of the model follows that of the real data, big dif-
ferences are quite evident. �c�k�� for the model is much nar-
rower then that from the empirical measurements. This
means that it does not catch the main complex organization
of words. In the text words belong to different subgraphs,
reflected in their clustering coefficient, depending on their
functional role. In the model all vertices look equivalent in a
single global hierarchical organization.

Another measure we are interested in is the counting of
the occurrence of binary structures in the model during the
evolution of the network. We show this result in Fig. 6�a�
comparing it with a line representing the measured value
from our network. As we can see the D-M model misses the
massive formation of binary structures we observe in the real
network.

B. Extension of the model

We extend the D-M model to include the local behavior of
language. We want to elaborate the D-M approach distin-

guishing when the PA attachment mechanism is local, that is,
when a new word is attached to one of its previous neigh-
bors, or global.

We find that the probability that the preferentially chosen
edges at each time step are part of a previously existing
binary structure follows the power law

p�t� 
 0.1t0.16 �5�

quite well. We try to implement this ingredient in the next
model.

Model 2. We start with a chain of 20 connected vertices.
�i� At each time step we add a new vertex �word� to the
network. We link it to an old vertex of the network through

FIG. 6. �a� Count of the occurrence of binary structures during
the evolution of the network for the D-M model compared to the
real network data. �b� Probability distribution for the occurrence of
some of the most frequent words in 1984. To obtain this measure
we partitioned the novel, each partition of 500 words, and counted
the number of times n that each word appears in each partition. As
we can see different words display different distributions. In par-
ticular “the” and the “full stop,” that are structural words, display a
Gaussian distribution, as shown by the Gaussian fits in the figure.
Otherwise a word such as “Winston,” who is the first character in
the novel, and is a meaningful word, or the pronoun “he” follow
different distributions.
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the global PA, that is, it will be linked to the vertex i, that is
not part of its nearest neighborhood, with probability propor-
tional to ki. �ii� For m�t�−1 times, where m�t� is the measur-
able function �4�, we perform the following operations: with
probability p�t� we link the last linked vertex to an old vertex
through local PA, that is, we link it to a node i in its nearest
neighborhood with probability proportional to ki; with prob-
ability 1− p�t� we link the last linked vertex to an old vertex
through global PA, that is, the last linked vertex will be
linked to the vertex i that is not part of its nearest neighbor-
hood with probability proportional to ki.

For this model the resulting average clustering coefficient
is very low if compared to that of our network. It means, as
we could expect, that the introduction of local PA supports
selective local rules in the growth of the network that
strongly limits the formation of triangles. We find �c�=0.08,
while in 1984 �c�=0.19. Thus, by construction, Model 2
matches the analysis performed in Fig. 6�a� for the growth of
the network due to repetition of binary structures.

C. Model 3

The D-M model catches the average clustering and the
global growth behavior of the network but misses the inter-

nal structure while Model 2 catches the global and nearest
neighbor growth behavior of the real network but not the
characteristic average clustering coefficient. Starting from
this last model we would like to find a mechanism to in-
crease the value of the average clustering coefficient.

It is now useful to consider the entropic analysis of lan-
guage performed by Zanette and Montemurro in Ref. �24�.
They found that different words in written human language
display different statistical distributions, according to their
function in the text. Making a partition of the text and count-
ing the occurrence of each word in the partitions, they found
that the most frequent words like punctuation and articles
follow a Gaussian distribution, that is, they are randomly
distributed.

We show in Fig. 6�b� a similar measure for the probability
distribution for the occurrence of different functional words
in the novel 1984. Our analysis agrees with that in Ref. �24�.
With this in mind, we import into our next model three a
priori selected vertices, representing main punctuation and
articles, with different growth properties to the other vertices
in the network.

Model 3. We start with a chain of 20 linked vertices. �i� At
each time step we add a new vertex �word� to the network.
We link it to an old vertex of the network through the global
PA, that is it will be linked to the vertex i that is not part of
its nearest neighborhood with probability proportional to ki.

FIG. 7. Comparison between the D-M model, Model 3, and real
data. �a� Zipf’s law. �b� Degree frequency count. In both plots loga-
rithmic binning is used to reduce noise.

FIG. 8. Average clustering coefficient versus the degree of the
vertices. �a� Comparison between D-M model and real data. �b�
Comparison between Model 3 and real data.
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�ii� For m�t�−1 times, where m�t� is the measurable function
�4�, we perform the following operations: with fixed prob-
ability q=0.05 we link the last linked vertex to one of the
three fixed vertices; with probability p�t�, given by Eq. �5�,
we link the last linked vertex to an old vertex through local
PA, that is we link it to a node i in its nearest neighborhood
with probability proportional to ki; with probability 1− p�t�
−3q we link the last linked vertex to an old vertex through
global PA, that is the last linked vertex will be linked to the
vertex i that is not part of its nearest neighborhood with
probability proportional to ki.

In the last model, with the introduction of the new random
attachment mechanism, the average clustering coefficient in-
creases and becomes �c�=0.20, whilst preserving the global
and the nearest neighbor growth counting.

The D-M model, Model 3, and 1984 data are compared in
Figs. 7–9. Figure 7�a� reveals that Model 3 is better able than
the D-M model to reproduce Zipf’s law. In Fig. 8�b� the
measured average clustering coefficient for Model 3 results
in a spread distribution. This is evidence of a role differen-
tiation in the vertices during the evolution of the network,
that is a self-organization of the vertices in the different local
structures.

Nevertheless, the main global statistical properties of the
network, as shown in Fig. 7�b�, are preserved. This is evident
in Fig. 9, where the average clustering coefficient versus the
degree of the vertices are compared between real data, D-M
model, and Model 3, using logarithmic binning. This kind of
measure, reducing the noises due to the vertices functional
differentiation, reveals that the main clustering architecture
of Model 3 is better than that of D-M model in reproducing

the complex organization of the real network. This is clear
especially comparing the tails of the graphs.

IV. CONCLUSIONS

In this work we analyzed in detail the topology of human
written language, through a network representation of Or-
well’s 1984. We performed average clustering coefficient and
nearest neighbor analysis, finding that two different vertex
behaviors clearly emerge. We performed entropic analysis
that allowed us to distinguish different roles of words. We
studied the relevance of second order correlations between
vertices, finding that those are essential properties of the net-
work architecture.

We proposed a model for matching the identified empiri-
cal behavior. This model included different growth mecha-
nisms; a local preferential attachment and the allocation of a
set of preselected vertices that have a structural rather than a
functional purpose.

The degree of complexity of our model is greater than that
of classical models, but it allows the resulting network to
show a complex organization, revealed by a spread distribu-
tion for the average clustering coefficient versus the degree
of vertices.

We would like to stress that nearest neighbor analysis for
our network display peculiar behavior, much more than those
showed in this brief review, and should be considered as the
basis for the understanding of network theory with a mixed
local-global growth mechanism. These considerations are
relevant for all natural systems showing syntacticlike organi-
zation rules, that are selective rules creating an intelligent
ensemble from simple elements.

Although we have only considered one book we think the
features identified are likely to be representative of many
texts. A comparison with other texts is not the main aim of
the present paper. We are not looking for universal language
laws, but trying to reproduce the main behavior of the
sample under consideration. We will go on to consider fur-
ther texts in later work.

Further empirical and theoretical research would be use-
ful. Human language is very important for the general study
of network theory because of its great availability, the preci-
sion of the data, and because we have a detailed knowledge
of its local organizational rules.

ACKNOWLEDGMENTS

This research was part of the NET-ACE project, sup-
ported by the EC. We would like to thank Pierpaolo Vivo for
discussions and useful suggestions.

�1� R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47 �2002�.
�2� G. K. Zipf, Human Behavior and the Principle of Least Effort

�Addison-Wesley, Reading, MA, 1949�.
�3� H. A. Simon, Biometrika 42, 425 �1955�.

�4� A. L. Barabasi, R. Albert, and H. Jeong, Physica A 272, 173
�1999�.

�5� S. N. Dorogovtsev and J. F. F. Mendes, Proc. R. Soc. London,
Ser. B 268, 2603 �2001�.

FIG. 9. Comparison of the average clustering coefficient versus
the degree of the vertices, obtained using logarithmic binning, be-
tween real data, D-M model and Model 3.

NETWORK PROPERTIES OF WRITTEN HUMAN LANGUAGE PHYSICAL REVIEW E 74, 026102 �2006�

026102-7



�6� R. Ferrer and R. V. Solé �unpublished�.
�7� R. Ferrer and R. V. Solé, J. Quant. Linguistic 8, 165 �2001�.
�8� R. Ferrer, R. V. Solé, and R. Kohler, Phys. Rev. E 69, 051915

�2004�.
�9� M. A. Montemurro, Physica A 300, 567 �2001�.

�10� D. H. Zanette and M. A. Montemurro, J. Quant. Linguistics
12, 29 �2005�.

�11� S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.
Rev. Lett. 85, 4633 �2000�.

�12� P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.
85, 4629 �2000�.

�13� M. A. Nowak, N. L. Komarova, and P. Niyogi, Nature �Lon-
don� 417, 611 �2002�.

�14� D. M. Abrams and S. H. Strogatz, Nature �London� 424, 900
�2003�.

�15� V. M. de Oliveira, M. A. F. Gomes, and I. R. Tsang, Physica A
361, 361 �2006�.

�16� G. Orwell, Nineteen Eighty-four �Penguin Books Ltd., Paper-
back, Toronto, 1990�.

�17� http://www.online-literature.com/orwell/1984/
�18� D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93,

268701 �2004�.
�19� W. Li, IEEE Trans. Inf. Theory 38, 6 �1992�.
�20� S. N. Dorogovtsev and J. F. F. Mendes, in Handbook of

Graphs and Networks: From the Genome to the Internet, ed-
ited by S. Bornholdt and H. G. Schuster �Wiley-VCH, Berlin,
2002�, p. 318–341.

�21� E. Ravasz and A. L. Barabasi, Phys. Rev. E 67, 026112
�2003�.

�22� A. Vasquez, Phys. Rev. E 67, 056104 �2003�.
�23� R. Ferrer, A. Capocci, and G. Caldarelli, e-print cond-mat/

0504165 �2005�.
�24� M. A. Montemurro and D. H. Zanette, Adv. Complex Syst. 5,

7 �2002�.

A. P. MASUCCI AND G. J. RODGERS PHYSICAL REVIEW E 74, 026102 �2006�

026102-8


